Nuprl Lemma : reg-seq-mul_wf2
∀[x,y:ℝ].  (reg-seq-mul(x;y) ∈ {f:ℕ+ ⟶ ℤ| imax(|x 1|;|y 1|) + 4-regular-seq(f)} )
Proof
Definitions occuring in Statement : 
reg-seq-mul: reg-seq-mul(x;y)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
imax: imax(a;b)
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
canon-bnd: canon-bnd(x)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
reg-seq-mul_wf, 
regular-int-seq_wf, 
imax_wf, 
absval_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
real_wf, 
ifthenelse_wf, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
le_wf, 
istype-le, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
add-is-int-iff, 
false_wf, 
add_functionality_wrt_eq, 
imax_unfold, 
iff_weakening_equal, 
reg-seq-mul-regular, 
canon-bnd_wf, 
imax_nat_plus, 
subtype_rel_set, 
int_upper_wf, 
nat_plus_wf, 
istype-int_upper, 
subtype_rel_sets_simple, 
less_than_wf, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
nat_plus_properties, 
imax_ub, 
decidable__le, 
mul_preserves_le, 
nat_plus_subtype_nat, 
le_functionality, 
le_weakening, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
universeIsType, 
addEquality, 
applyEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
hypothesisEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectIsTypeImplies, 
intEquality, 
lambdaFormation_alt, 
equalityElimination, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqEquality, 
independent_pairFormation, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalIntensionalEquality, 
functionEquality, 
multiplyEquality, 
applyLambdaEquality, 
inlFormation_alt, 
imageMemberEquality, 
imageElimination, 
inrFormation_alt
Latex:
\mforall{}[x,y:\mBbbR{}].    (reg-seq-mul(x;y)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  imax(|x  1|;|y  1|)  +  4-regular-seq(f)\}  )
Date html generated:
2019_10_16-PM-03_06_48
Last ObjectModification:
2019_01_31-PM-04_48_18
Theory : reals
Home
Index