Nuprl Lemma : reg-seq-mul_wf2

[x,y:ℝ].  (reg-seq-mul(x;y) ∈ {f:ℕ+ ⟶ ℤimax(|x 1|;|y 1|) 4-regular-seq(f)} )


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) real: regular-int-seq: k-regular-seq(f) imax: imax(a;b) absval: |i| nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B nat: canon-bnd: canon-bnd(x) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q) ge: i ≥  sq_stable: SqStable(P) squash: T
Lemmas referenced :  reg-seq-mul_wf regular-int-seq_wf imax_wf absval_wf decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than real_wf ifthenelse_wf le_int_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf istype-le intformand_wf intformle_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-is-int-iff false_wf add_functionality_wrt_eq imax_unfold iff_weakening_equal reg-seq-mul-regular canon-bnd_wf imax_nat_plus subtype_rel_set int_upper_wf nat_plus_wf istype-int_upper subtype_rel_sets_simple less_than_wf istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel nat_plus_properties imax_ub decidable__le mul_preserves_le nat_plus_subtype_nat le_functionality le_weakening sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis universeIsType addEquality applyEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule hypothesisEquality inhabitedIsType equalityTransitivity equalitySymmetry axiomEquality isectIsTypeImplies intEquality lambdaFormation_alt equalityElimination productElimination equalityIstype promote_hyp instantiate cumulativity int_eqEquality independent_pairFormation pointwiseFunctionality baseApply closedConclusion baseClosed sqequalIntensionalEquality functionEquality multiplyEquality applyLambdaEquality inlFormation_alt imageMemberEquality imageElimination inrFormation_alt

Latex:
\mforall{}[x,y:\mBbbR{}].    (reg-seq-mul(x;y)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  imax(|x  1|;|y  1|)  +  4-regular-seq(f)\}  )



Date html generated: 2019_10_16-PM-03_06_48
Last ObjectModification: 2019_01_31-PM-04_48_18

Theory : reals


Home Index