Nuprl Lemma : assert_of_le_int

[x,y:ℤ].  uiff(↑x ≤y;x ≤ y)


Proof




Definitions occuring in Statement :  le_int: i ≤j assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] prop: le_int: i ≤j uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B not: ¬A implies:  Q false: False assert: b ifthenelse: if then else fi  all: x:A. B[x] bool: 𝔹 true: True iff: ⇐⇒ Q rev_implies:  Q gt: i > j guard: {T}
Lemmas referenced :  less_than'_wf assert_wf bnot_wf lt_int_wf true_wf false_wf le_wf equal_wf bool_wf iff_weakening_uiff not_wf assert_of_bnot uiff_wf not-gt-2 less_than_wf less_than_transitivity1 less_than_irreflexivity assert_of_lt_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality because_Cache sqequalRule isect_memberFormation productElimination independent_pairEquality isect_memberEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination independent_functionElimination voidElimination addLevel independent_pairFormation independent_isectElimination cumulativity instantiate

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}x  \mleq{}z  y;x  \mleq{}  y)



Date html generated: 2018_05_21-PM-00_02_12
Last ObjectModification: 2018_05_19-AM-07_13_22

Theory : arithmetic


Home Index