Nuprl Lemma : le_int_wf

[i,j:ℤ].  (i ≤j ∈ 𝔹)


Proof




Definitions occuring in Statement :  le_int: i ≤j bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T le_int: i ≤j
Lemmas referenced :  bnot_wf lt_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  \mleq{}z  j  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-00_01_10
Last ObjectModification: 2018_05_19-AM-07_13_23

Theory : union


Home Index