Nuprl Lemma : reg-seq-mul-regular
∀[x,y:ℝ].  ∀k:ℕ+. k + 1-regular-seq(reg-seq-mul(x;y)) supposing ∀n:ℕ+. ((|x n| ≤ (n * k)) ∧ (|y n| ≤ (n * k)))
Proof
Definitions occuring in Statement : 
reg-seq-mul: reg-seq-mul(x;y)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
regular-int-seq: k-regular-seq(f)
, 
subtype_rel: A ⊆r B
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
real: ℝ
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
ge: i ≥ j 
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
reg-seq-mul-regular-eventually, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
istype-int_upper, 
subtype_rel_sets_simple, 
less_than_wf, 
le_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_witness_for_triv, 
istype-le, 
absval_wf, 
nat_plus_wf, 
real_wf, 
int_upper_properties, 
mul_preserves_le, 
upper_subtype_nat, 
istype-false, 
subtract_wf, 
add_nat_wf, 
multiply_nat_wf, 
nat_properties, 
itermMultiply_wf, 
intformeq_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_functionality, 
multiply_functionality_wrt_le, 
le_weakening, 
add_functionality_wrt_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
inhabitedIsType, 
applyEquality, 
intEquality, 
because_Cache, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
functionIsType, 
productIsType, 
multiplyEquality, 
isectIsTypeImplies, 
applyLambdaEquality, 
equalityIstype
Latex:
\mforall{}[x,y:\mBbbR{}].
    \mforall{}k:\mBbbN{}\msupplus{}
        k  +  1-regular-seq(reg-seq-mul(x;y))  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  ((|x  n|  \mleq{}  (n  *  k))  \mwedge{}  (|y  n|  \mleq{}  (n  *  k)))
Date html generated:
2019_10_16-PM-03_06_27
Last ObjectModification:
2019_02_14-PM-06_37_56
Theory : reals
Home
Index