Nuprl Lemma : reg-seq-mul-regular

[x,y:ℝ].  ∀k:ℕ+1-regular-seq(reg-seq-mul(x;y)) supposing ∀n:ℕ+((|x n| ≤ (n k)) ∧ (|y n| ≤ (n k)))


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) real: regular-int-seq: k-regular-seq(f) absval: |i| nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] and: P ∧ Q apply: a multiply: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: regular-int-seq: k-regular-seq(f) subtype_rel: A ⊆B int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B real: nat: less_than': less_than'(a;b) guard: {T} ge: i ≥  rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  reg-seq-mul-regular-eventually nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than istype-int_upper subtype_rel_sets_simple less_than_wf le_wf decidable__le intformle_wf int_formula_prop_le_lemma le_witness_for_triv istype-le absval_wf nat_plus_wf real_wf int_upper_properties mul_preserves_le upper_subtype_nat istype-false subtract_wf add_nat_wf multiply_nat_wf nat_properties itermMultiply_wf intformeq_wf int_term_value_mul_lemma int_formula_prop_eq_lemma itermSubtract_wf int_term_value_subtract_lemma le_functionality multiply_functionality_wrt_le le_weakening add_functionality_wrt_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination dependent_set_memberEquality_alt addEquality setElimination rename hypothesis natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType inhabitedIsType applyEquality intEquality because_Cache productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies functionIsType productIsType multiplyEquality isectIsTypeImplies applyLambdaEquality equalityIstype

Latex:
\mforall{}[x,y:\mBbbR{}].
    \mforall{}k:\mBbbN{}\msupplus{}
        k  +  1-regular-seq(reg-seq-mul(x;y))  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  ((|x  n|  \mleq{}  (n  *  k))  \mwedge{}  (|y  n|  \mleq{}  (n  *  k)))



Date html generated: 2019_10_16-PM-03_06_27
Last ObjectModification: 2019_02_14-PM-06_37_56

Theory : reals


Home Index