Nuprl Lemma : le_witness_for_triv

[i,j:ℤ].  <λx.Ax, Ax, Ax> ∈ i ≤ supposing i ≤ j


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B member: t ∈ T lambda: λx.A[x] pair: <a, b> int: axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q top: Top not: ¬A implies:  Q prop:
Lemmas referenced :  member-not less_than'_wf istype-void istype-le istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule independent_pairEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :isect_memberEquality_alt,  voidElimination independent_isectElimination Error :lambdaFormation_alt,  Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  productElimination independent_functionElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].    <\mlambda{}x.Ax,  Ax,  Ax>  \mmember{}  i  \mleq{}  j  supposing  i  \mleq{}  j



Date html generated: 2019_06_20-AM-11_22_25
Last ObjectModification: 2018_10_27-PM-10_32_52

Theory : arithmetic


Home Index