Nuprl Lemma : le_witness_for_triv
∀[i,j:ℤ].  <λx.Ax, Ax, Ax> ∈ i ≤ j supposing i ≤ j
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
int: ℤ
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
member-not, 
less_than'_wf, 
istype-void, 
istype-le, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].    <\mlambda{}x.Ax,  Ax,  Ax>  \mmember{}  i  \mleq{}  j  supposing  i  \mleq{}  j
Date html generated:
2019_06_20-AM-11_22_25
Last ObjectModification:
2018_10_27-PM-10_32_52
Theory : arithmetic
Home
Index