Nuprl Lemma : canon-bnd_wf

[x:ℝ]. (canon-bnd(x) ∈ {k:{3...}| ∀n:ℕ+(|x n| ≤ (n k))} )


Proof




Definitions occuring in Statement :  canon-bnd: canon-bnd(x) real: absval: |i| int_upper: {i...} nat_plus: + uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  and: P ∧ Q ge: i ≥  guard: {T} nat: subtype_rel: A ⊆B false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat_plus: + int_upper: {i...} canon-bnd: canon-bnd(x) real: member: t ∈ T uall: [x:A]. B[x] regular-int-seq: k-regular-seq(f) subtract: m sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q squash: T rev_uimplies: rev_uimplies(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] true: True
Lemmas referenced :  real_wf nat_plus_wf istype-le int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermAdd_wf itermVar_wf intformle_wf intformand_wf nat_properties decidable__le istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt absval_wf nat_plus_properties add-zero zero-mul add-mul-special add-swap add-commutes one-mul mul-commutes minus-one-mul mul-distributes subtract_wf int-triangle-inequality int_subtype_base subtype_base_sq decidable__equal_int int_term_value_mul_lemma itermMultiply_wf iff_weakening_equal subtype_rel_self absval_mul add_functionality_wrt_eq true_wf squash_wf add_functionality_wrt_le le_weakening le_functionality nat_plus_subtype_nat absval_pos absval-non-neg le_wf set_subtype_base nat_wf int_formula_prop_eq_lemma intformeq_wf
Rules used in proof :  axiomEquality multiplyEquality functionIsType lambdaFormation_alt independent_pairFormation int_eqEquality applyLambdaEquality equalitySymmetry equalityTransitivity because_Cache universeIsType sqequalRule voidElimination isect_memberEquality_alt lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination hypothesis dependent_functionElimination natural_numberEquality hypothesisEquality applyEquality isectElimination extract_by_obid addEquality dependent_set_memberEquality_alt rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inhabitedIsType minusEquality intEquality cumulativity instantiate productElimination universeEquality baseClosed imageMemberEquality imageElimination

Latex:
\mforall{}[x:\mBbbR{}].  (canon-bnd(x)  \mmember{}  \{k:\{3...\}|  \mforall{}n:\mBbbN{}\msupplus{}.  (|x  n|  \mleq{}  (n  *  k))\}  )



Date html generated: 2019_10_16-PM-03_06_37
Last ObjectModification: 2019_10_10-PM-03_16_17

Theory : reals


Home Index