Nuprl Lemma : canon-bnd_wf
∀[x:ℝ]. (canon-bnd(x) ∈ {k:{3...}| ∀n:ℕ+. (|x n| ≤ (n * k))} )
Proof
Definitions occuring in Statement : 
canon-bnd: canon-bnd(x)
, 
real: ℝ
, 
absval: |i|
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
and: P ∧ Q
, 
ge: i ≥ j 
, 
guard: {T}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
false: False
, 
prop: ℙ
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
canon-bnd: canon-bnd(x)
, 
real: ℝ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
regular-int-seq: k-regular-seq(f)
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
rev_uimplies: rev_uimplies(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
Lemmas referenced : 
real_wf, 
nat_plus_wf, 
istype-le, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
nat_properties, 
decidable__le, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
absval_wf, 
nat_plus_properties, 
add-zero, 
zero-mul, 
add-mul-special, 
add-swap, 
add-commutes, 
one-mul, 
mul-commutes, 
minus-one-mul, 
mul-distributes, 
subtract_wf, 
int-triangle-inequality, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
iff_weakening_equal, 
subtype_rel_self, 
absval_mul, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
add_functionality_wrt_le, 
le_weakening, 
le_functionality, 
nat_plus_subtype_nat, 
absval_pos, 
absval-non-neg, 
le_wf, 
set_subtype_base, 
nat_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf
Rules used in proof : 
axiomEquality, 
multiplyEquality, 
functionIsType, 
lambdaFormation_alt, 
independent_pairFormation, 
int_eqEquality, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
universeIsType, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
extract_by_obid, 
addEquality, 
dependent_set_memberEquality_alt, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inhabitedIsType, 
minusEquality, 
intEquality, 
cumulativity, 
instantiate, 
productElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}[x:\mBbbR{}].  (canon-bnd(x)  \mmember{}  \{k:\{3...\}|  \mforall{}n:\mBbbN{}\msupplus{}.  (|x  n|  \mleq{}  (n  *  k))\}  )
Date html generated:
2019_10_16-PM-03_06_37
Last ObjectModification:
2019_10_10-PM-03_16_17
Theory : reals
Home
Index