Nuprl Lemma : absval-non-neg

[x:ℤ]. (0 ≤ |x|)


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B nat: prop:
Lemmas referenced :  decidable__int_equal zero-le-nat absval_wf less_than'_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination isectElimination sqequalRule productElimination independent_pairEquality lambdaEquality voidElimination applyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (0  \mleq{}  |x|)



Date html generated: 2016_05_13-PM-03_34_01
Last ObjectModification: 2015_12_26-AM-09_43_54

Theory : arithmetic


Home Index