Nuprl Lemma : real-has-value
∀[x:ℝ]. (x)↓
Proof
Definitions occuring in Statement : 
real: ℝ
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real: ℝ
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
value-type-has-value, 
value-type_wf, 
int-value-type, 
less_than_wf, 
nat_plus_wf, 
function-value-type, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
axiomSqleEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
functionEquality
Latex:
\mforall{}[x:\mBbbR{}].  (x)\mdownarrow{}
Date html generated:
2016_05_18-AM-06_46_57
Last ObjectModification:
2016_01_17-AM-01_45_20
Theory : reals
Home
Index