Nuprl Lemma : real-has-value

[x:ℝ]. (x)↓


Proof




Definitions occuring in Statement :  real: has-value: (a)↓ uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop:
Lemmas referenced :  value-type-has-value value-type_wf int-value-type less_than_wf nat_plus_wf function-value-type real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule axiomSqleEquality hypothesis lemma_by_obid isectElimination lambdaEquality intEquality independent_isectElimination dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed functionEquality

Latex:
\mforall{}[x:\mBbbR{}].  (x)\mdownarrow{}



Date html generated: 2016_05_18-AM-06_46_57
Last ObjectModification: 2016_01_17-AM-01_45_20

Theory : reals


Home Index