Nuprl Lemma : rmul_functionality
∀[r1,r2,s1,s2:ℝ].  ((r1 * s1) = (r2 * s2)) supposing ((s1 = s2) and (r1 = r2))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
req-iff-bdd-diff, 
rmul_wf, 
bdd-diff_functionality, 
reg-seq-mul_wf, 
rmul-bdd-diff-reg-seq-mul, 
reg-seq-mul_functionality_wrt_bdd-diff, 
req_witness, 
req_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r1,r2,s1,s2:\mBbbR{}].    ((r1  *  s1)  =  (r2  *  s2))  supposing  ((s1  =  s2)  and  (r1  =  r2))
Date html generated:
2016_05_18-AM-06_51_33
Last ObjectModification:
2015_12_28-AM-00_29_51
Theory : reals
Home
Index