Nuprl Lemma : reg-seq-mul_functionality_wrt_bdd-diff

x1:ℝ. ∀[x2,y1:ℕ+ ⟶ ℤ].  ∀y2:ℝ(bdd-diff(y1;y2)  bdd-diff(x1;x2)  bdd-diff(reg-seq-mul(x1;y1);reg-seq-mul(x2;y2)))


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) real: bdd-diff: bdd-diff(f;g) nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q bdd-diff: bdd-diff(f;g) exists: x:A. B[x] reg-seq-mul: reg-seq-mul(x;y) member: t ∈ T nat: subtype_rel: A ⊆B int_upper: {i...} so_lambda: λ2x.t[x] real: nat_plus: + so_apply: x[s] prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A uimplies: supposing a guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nequal: a ≠ b ∈  squash: T true: True iff: ⇐⇒ Q rev_implies:  Q int_nzero: -o sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) subtract: m sq_type: SQType(T) less_than: a < b
Lemmas referenced :  canonical-bound_wf int_upper_wf all_wf nat_plus_wf le_wf absval_wf add_nat_wf false_wf multiply_nat_wf subtype_rel_set nat_wf int_upper_subtype_nat nat_properties decidable__le add-is-int-iff multiply-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf mul_cancel_in_le subtract_wf nat_plus_properties intformless_wf int_formula_prop_less_lemma absval_nat_plus equal-wf-T-base squash_wf true_wf absval_mul iff_weakening_equal less_than'_wf equal-wf-base bdd-diff_wf real_wf nequal_wf rem_bounds_absval less_than_wf set_wf left_mul_subtract_distrib div_rem_sum2 sq_stable__less_than le_functionality le_weakening add_functionality_wrt_le int-triangle-inequality minus-add minus-minus add-associates minus-one-mul add-swap add-commutes subtype_base_sq int_subtype_base decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma add_functionality_wrt_eq multiply_functionality_wrt_le sq_stable__le absval_pos nat_plus_subtype_nat int_upper_properties absval_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution productElimination thin sqequalRule dependent_pairFormation dependent_set_memberEquality addEquality natural_numberEquality multiplyEquality setElimination rename cut hypothesisEquality hypothesis introduction extract_by_obid isectElimination applyEquality lambdaEquality setEquality because_Cache independent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination unionElimination pointwiseFunctionality promote_hyp baseClosed baseApply closedConclusion int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination divideEquality imageElimination imageMemberEquality universeEquality independent_pairEquality axiomEquality functionExtensionality functionEquality remainderEquality minusEquality instantiate cumulativity

Latex:
\mforall{}x1:\mBbbR{}
    \mforall{}[x2,y1:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
        \mforall{}y2:\mBbbR{}.  (bdd-diff(y1;y2)  {}\mRightarrow{}  bdd-diff(x1;x2)  {}\mRightarrow{}  bdd-diff(reg-seq-mul(x1;y1);reg-seq-mul(x2;y2)))



Date html generated: 2017_10_02-PM-07_15_06
Last ObjectModification: 2017_07_28-AM-07_20_19

Theory : reals


Home Index