Nuprl Lemma : rem_bounds_absval

b:ℤ-o. ∀a:ℤ.  |a rem b| < |b|


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o less_than: a < b all: x:A. B[x] remainder: rem m int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q nat: nat_plus: + le: A ≤ B int_lower: {...i} decidable: Dec(P) subtract: m subtype_rel: A ⊆B gt: i > j ge: i ≥ 
Lemmas referenced :  absval_unfold2 equal_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot not-lt-2 int_nzero_wf rem-sign rem_bounds_1 le_weakening2 le_wf rem_bounds_4 decidable__le false_wf not-le-2 not-equal-2 condition-implies-le minus-zero add-zero minus-add minus-minus add-swap add-commutes add-associates zero-add add_functionality_wrt_le le-add-cancel decidable__int_equal int_subtype_base decidable__lt rem_bounds_2 add_functionality_wrt_lt subtract_wf le_reflexive minus-one-mul add-mul-special zero-mul int_nzero_properties rem_bounds_3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin remainderEquality because_Cache setElimination rename hypothesis independent_functionElimination voidElimination intEquality hypothesisEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate impliesFunctionality cumulativity dependent_set_memberEquality minusEquality addEquality applyEquality lambdaEquality multiplyEquality

Latex:
\mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}a:\mBbbZ{}.    |a  rem  b|  <  |b|



Date html generated: 2017_04_14-AM-07_17_40
Last ObjectModification: 2017_02_27-PM-02_52_14

Theory : arithmetic


Home Index