Nuprl Lemma : absval_unfold2

[x:ℤ]. (|x| if (0) < (x)  then x  else (-x))


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] less: if (a) < (b)  then c  else d minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  absval: |i| uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a
Lemmas referenced :  value-type-has-value int-value-type
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality sqequalAxiom

Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \msim{}  if  (0)  <  (x)    then  x    else  (-x))



Date html generated: 2016_05_13-PM-03_33_38
Last ObjectModification: 2015_12_26-AM-09_44_27

Theory : arithmetic


Home Index