Nuprl Lemma : rem-sign

[a:ℤ]. ∀[n:ℤ-o].  (((0 ≤ a)  (0 ≤ (a rem n))) ∧ (0 < rem  0 < a) ∧ (a rem n <  a < 0))


Proof




Definitions occuring in Statement :  int_nzero: -o less_than: a < b uall: [x:A]. B[x] le: A ≤ B implies:  Q and: P ∧ Q remainder: rem m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T int_nzero: -o decidable: Dec(P) or: P ∨ Q and: P ∧ Q cand: c∧ B implies:  Q uall: [x:A]. B[x] nat: prop: nat_plus: + le: A ≤ B nequal: a ≠ b ∈  iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a less_than': less_than'(a;b) true: True subtract: m subtype_rel: A ⊆B top: Top int_lower: {...i} rev_uimplies: rev_uimplies(P;Q) guard: {T} gt: i > j ge: i ≥ 
Lemmas referenced :  decidable__le rem_bounds_1 le_wf decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf equal_wf rem_bounds_4 not-le-2 int_nzero_wf minus-one-mul minus-one-mul-top minus-minus add-swap add-associates le-add-cancel2 or_wf less_than'_wf member-less_than rem_bounds_2 not-gt-2 less_than_transitivity1 less_than_irreflexivity rem_bounds_3
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis unionElimination lambdaFormation isectElimination dependent_set_memberEquality productElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination addEquality sqequalRule minusEquality applyEquality lambdaEquality isect_memberEquality voidEquality because_Cache remainderEquality intEquality inlFormation inrFormation addLevel orFunctionality isect_memberFormation introduction independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (((0  \mleq{}  a)  {}\mRightarrow{}  (0  \mleq{}  (a  rem  n)))  \mwedge{}  (0  <  a  rem  n  {}\mRightarrow{}  0  <  a)  \mwedge{}  (a  rem  n  <  0  {}\mRightarrow{}  a  <  0))



Date html generated: 2016_05_13-PM-03_34_47
Last ObjectModification: 2015_12_26-AM-09_43_57

Theory : arithmetic


Home Index