Nuprl Lemma : rem_bounds_3
∀[a:{...0}]. ∀[n:{...-1}].  ((0 ≥ (a rem n) ) ∧ ((a rem n) > n))
Proof
Definitions occuring in Statement : 
int_lower: {...i}
, 
uall: ∀[x:A]. B[x]
, 
gt: i > j
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
remainder: n rem m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
gt: i > j
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
int_lower: {...i}
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than: a < b
, 
squash: ↓T
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
int_nzero: ℤ-o
Lemmas referenced : 
int_lower_wf, 
equal_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
member-less_than, 
or_wf, 
le-add-cancel, 
add_functionality_wrt_le, 
minus-zero, 
minus-add, 
zero-add, 
add-swap, 
add-commutes, 
add-associates, 
condition-implies-le, 
not-le-2, 
false_wf, 
le_wf, 
decidable__le, 
not-equal-2, 
less_than'_wf, 
decidable__lt, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
istype-void, 
eqff_to_assert, 
set_subtype_base, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
eq_int_wf, 
assert_of_eq_int, 
le_antisymmetry_iff, 
sq_stable_from_decidable, 
add-zero, 
le-add-cancel-alt, 
equal-wf-base, 
not-lt-2, 
gt_wf, 
iff_weakening_equal, 
subtype_rel_self, 
nequal_wf, 
subtype_rel_sets, 
rem-zero, 
true_wf, 
squash_wf, 
ge_wf, 
not-gt-2, 
decidable__int_equal
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
orFunctionality, 
addLevel, 
independent_functionElimination, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
applyEquality, 
inrFormation, 
voidElimination, 
lambdaFormation, 
independent_pairFormation, 
inlFormation, 
unionElimination, 
addEquality, 
independent_isectElimination, 
hypothesis, 
rename, 
setElimination, 
remainderEquality, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lessCases, 
Error :remNegative, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
equalityElimination, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
Error :lambdaEquality_alt, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :functionIsType, 
Error :equalityIsType1, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
remainderBounds3, 
productEquality, 
universeEquality, 
setEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\{...-1\}].    ((0  \mgeq{}  (a  rem  n)  )  \mwedge{}  ((a  rem  n)  >  n))
Date html generated:
2019_06_20-AM-11_24_11
Last ObjectModification:
2018_10_15-PM-03_03_15
Theory : arithmetic
Home
Index