Nuprl Lemma : rem-zero
∀[n:ℤ-o]. ((0 rem n) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
nequal: a ≠ b ∈ T 
, 
or: P ∨ Q
, 
guard: {T}
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
not-equal-2, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
zero-add, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
istype-void, 
minus-add, 
minus-zero, 
eqff_to_assert, 
set_subtype_base, 
nequal_wf, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
iff_weakening_uiff, 
assert_of_bnot, 
false_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
Error :remZero, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
int_eqReduceTrueSq, 
dependent_functionElimination, 
addEquality, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
minusEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
intEquality, 
Error :dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_pairFormation, 
Error :functionIsType, 
int_eqReduceFalseSq, 
Error :equalityIsType1
Latex:
\mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].  ((0  rem  n)  =  0)
Date html generated:
2019_06_20-AM-11_23_59
Last ObjectModification:
2018_10_15-AM-08_42_36
Theory : arithmetic
Home
Index