Nuprl Lemma : canonical-bound_wf
∀[r:ℝ]. (canonical-bound(r) ∈ {k:{2...}| ∀n:ℕ+. (|r n| ≤ ((2 * n) * k))} )
Proof
Definitions occuring in Statement :
canonical-bound: canonical-bound(r)
,
real: ℝ
,
absval: |i|
,
int_upper: {i...}
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
multiply: n * m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
real: ℝ
,
nat_plus: ℕ+
,
guard: {T}
,
int_upper: {i...}
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
prop: ℙ
,
false: False
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
int_nzero: ℤ-o
,
true: True
,
nequal: a ≠ b ∈ T
,
sq_type: SQType(T)
,
ge: i ≥ j
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
canonical-bound: canonical-bound(r)
,
less_than: a < b
,
rev_uimplies: rev_uimplies(P;Q)
,
canon-bnd: canon-bnd(x)
Lemmas referenced :
canon-bnd_wf,
div_rem_sum,
absval_wf,
int_upper_properties,
decidable__lt,
full-omega-unsat,
intformnot_wf,
intformless_wf,
itermConstant_wf,
istype-int,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
istype-less_than,
subtype_base_sq,
int_subtype_base,
nequal_wf,
rem_bounds_1,
add_nat_wf,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
istype-le,
nat_properties,
add-is-int-iff,
intformand_wf,
itermVar_wf,
itermAdd_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_formula_prop_eq_lemma,
false_wf,
multiply-is-int-iff,
itermMultiply_wf,
int_term_value_mul_lemma,
mul_preserves_le,
nat_plus_subtype_nat,
nat_plus_wf,
real_wf,
nat_plus_properties,
le_functionality,
le_weakening
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
applyLambdaEquality,
setElimination,
rename,
sqequalRule,
imageMemberEquality,
baseClosed,
imageElimination,
addEquality,
applyEquality,
dependent_set_memberEquality_alt,
natural_numberEquality,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
isect_memberEquality_alt,
voidElimination,
universeIsType,
inhabitedIsType,
lambdaFormation_alt,
instantiate,
cumulativity,
intEquality,
equalityIstype,
sqequalBase,
because_Cache,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
productElimination,
int_eqEquality,
independent_pairFormation,
divideEquality,
multiplyEquality,
functionIsType
Latex:
\mforall{}[r:\mBbbR{}]. (canonical-bound(r) \mmember{} \{k:\{2...\}| \mforall{}n:\mBbbN{}\msupplus{}. (|r n| \mleq{} ((2 * n) * k))\} )
Date html generated:
2019_10_16-PM-03_06_42
Last ObjectModification:
2019_01_31-PM-04_38_30
Theory : reals
Home
Index