Nuprl Lemma : radd-zero-both
∀[x:ℝ]. (((x + r0) = x) ∧ ((r0 + x) = x))
Proof
Definitions occuring in Statement :
req: x = y
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
cand: A c∧ B
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
radd_wf,
req_witness,
iff_weakening_equal,
int-to-real_wf,
radd_comm_eq,
real_wf,
true_wf,
squash_wf,
req_wf,
radd-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_pairFormation,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
because_Cache,
sqequalRule,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
productElimination,
independent_functionElimination,
independent_pairEquality
Latex:
\mforall{}[x:\mBbbR{}]. (((x + r0) = x) \mwedge{} ((r0 + x) = x))
Date html generated:
2016_05_18-AM-06_51_43
Last ObjectModification:
2016_01_17-AM-01_46_28
Theory : reals
Home
Index