Nuprl Lemma : radd-zero
∀[x:ℝ]. ((x + r0) = x)
Proof
Definitions occuring in Statement :
req: x = y
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
radd: a + b
,
implies: P
⇒ Q
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
top: Top
,
real: ℝ
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
int-to-real: r(n)
,
bdd-diff: bdd-diff(f;g)
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
le: A ≤ B
,
false: False
,
not: ¬A
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
absval: |i|
,
subtract: n - m
Lemmas referenced :
add-mul-special,
zero-add,
zero-mul,
mul-associates,
mul-swap,
mul-commutes,
minus-one-mul,
add-associates,
bdd-diff_weakening,
accelerate-bdd-diff,
bdd-diff_functionality,
nat_wf,
subtract_wf,
absval_wf,
all_wf,
le_wf,
false_wf,
l_sum_nil_lemma,
l_sum_cons_lemma,
map_nil_lemma,
map_cons_lemma,
iff_weakening_equal,
reg-seq-list-add-as-l_sum,
true_wf,
squash_wf,
bdd-diff_wf,
length_wf,
regular-int-seq_wf,
nat_plus_wf,
length_of_nil_lemma,
length_of_cons_lemma,
nil_wf,
cons_wf,
reg-seq-list-add_wf,
less_than_wf,
accelerate_wf,
real_wf,
req_witness,
int-to-real_wf,
radd_wf,
req-iff-bdd-diff
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
natural_numberEquality,
hypothesis,
productElimination,
independent_isectElimination,
independent_functionElimination,
dependent_set_memberEquality,
sqequalRule,
independent_pairFormation,
imageMemberEquality,
baseClosed,
because_Cache,
applyEquality,
lambdaEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
setEquality,
functionEquality,
intEquality,
setElimination,
rename,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
dependent_pairFormation,
lambdaFormation,
addEquality,
multiplyEquality,
minusEquality
Latex:
\mforall{}[x:\mBbbR{}]. ((x + r0) = x)
Date html generated:
2016_05_18-AM-06_51_41
Last ObjectModification:
2016_01_17-AM-01_46_39
Theory : reals
Home
Index