Nuprl Lemma : rmul-identity1

[x:ℝ]. ((r1 x) x)


Proof




Definitions occuring in Statement :  req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf int-to-real_wf real_wf rmul-one req_functionality rmul_comm req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_functionElimination because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[x:\mBbbR{}].  ((r1  *  x)  =  x)



Date html generated: 2016_05_18-AM-06_52_11
Last ObjectModification: 2015_12_28-AM-00_30_27

Theory : reals


Home Index