Nuprl Lemma : rmul-identity1
∀[x:ℝ]. ((r1 * x) = x)
Proof
Definitions occuring in Statement : 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
rmul-one, 
req_functionality, 
rmul_comm, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x:\mBbbR{}].  ((r1  *  x)  =  x)
Date html generated:
2016_05_18-AM-06_52_11
Last ObjectModification:
2015_12_28-AM-00_30_27
Theory : reals
Home
Index