Nuprl Lemma : rmul_comm

[a,b:ℝ].  ((a b) (b a))


Proof




Definitions occuring in Statement :  req: y rmul: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  req-iff-bdd-diff rmul_wf req_witness real_wf reg-seq-mul_wf bdd-diff_weakening equal_wf squash_wf true_wf nat_plus_wf reg-seq-mul-comm iff_weakening_equal bdd-diff_functionality rmul-bdd-diff-reg-seq-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache applyEquality lambdaEquality setElimination rename dependent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality functionEquality intEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[a,b:\mBbbR{}].    ((a  *  b)  =  (b  *  a))



Date html generated: 2017_10_02-PM-07_15_36
Last ObjectModification: 2017_07_28-AM-07_20_34

Theory : reals


Home Index