Nuprl Lemma : reg-seq-mul-comm

[x,y:ℕ+ ⟶ ℤ].  (reg-seq-mul(x;y) reg-seq-mul(y;x) ∈ (ℕ+ ⟶ ℤ))


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) nat_plus: + uall: [x:A]. B[x] function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reg-seq-mul: reg-seq-mul(x;y) subtype_rel: A ⊆B top: Top nat_plus: + nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] and: P ∧ Q prop:
Lemmas referenced :  nat_plus_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties mul-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality intEquality divideEquality multiplyEquality because_Cache natural_numberEquality setElimination rename lambdaFormation independent_isectElimination dependent_pairFormation int_eqEquality dependent_functionElimination independent_pairFormation computeAll axiomEquality

Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg-seq-mul(x;y)  =  reg-seq-mul(y;x))



Date html generated: 2016_05_18-AM-06_49_32
Last ObjectModification: 2016_01_17-AM-01_45_44

Theory : reals


Home Index