Nuprl Lemma : reg-seq-mul-comm
∀[x,y:ℕ+ ⟶ ℤ].  (reg-seq-mul(x;y) = reg-seq-mul(y;x) ∈ (ℕ+ ⟶ ℤ))
Proof
Definitions occuring in Statement : 
reg-seq-mul: reg-seq-mul(x;y)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
nat_plus_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
mul-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
divideEquality, 
multiplyEquality, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
independent_pairFormation, 
computeAll, 
axiomEquality
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg-seq-mul(x;y)  =  reg-seq-mul(y;x))
Date html generated:
2016_05_18-AM-06_49_32
Last ObjectModification:
2016_01_17-AM-01_45_44
Theory : reals
Home
Index