Nuprl Lemma : rmul-distrib2
∀[x,y,z:ℝ].  (((y + z) * x) = ((y * x) + (z * x)))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
radd_wf, 
real_wf, 
rmul-distrib1, 
req_functionality, 
rmul_comm, 
radd_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x,y,z:\mBbbR{}].    (((y  +  z)  *  x)  =  ((y  *  x)  +  (z  *  x)))
Date html generated:
2016_05_18-AM-06_52_27
Last ObjectModification:
2015_12_28-AM-00_30_31
Theory : reals
Home
Index