Nuprl Lemma : rmul-distrib2

[x,y,z:ℝ].  (((y z) x) ((y x) (z x)))


Proof




Definitions occuring in Statement :  req: y rmul: b radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf radd_wf real_wf rmul-distrib1 req_functionality rmul_comm radd_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[x,y,z:\mBbbR{}].    (((y  +  z)  *  x)  =  ((y  *  x)  +  (z  *  x)))



Date html generated: 2016_05_18-AM-06_52_27
Last ObjectModification: 2015_12_28-AM-00_30_31

Theory : reals


Home Index