Nuprl Lemma : rmul-distrib1

[x,y,z:ℝ].  ((x (y z)) ((x y) (x z)))


Proof




Definitions occuring in Statement :  req: y rmul: b radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: radd: b all: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: top: Top guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] rmul: b reg-seq-mul: reg-seq-mul(x;y) reg-seq-list-add: reg-seq-list-add(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B false: False not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  int_nzero: -o subtract: m rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  req-iff-bdd-diff rmul_wf radd_wf req_witness real_wf reg-seq-mul_wf accelerate-bdd-diff less_than_wf reg-seq-list-add_wf cons_wf nil_wf length_of_cons_lemma length_of_nil_lemma nat_plus_wf regular-int-seq_wf length_wf accelerate_wf bdd-diff_wf squash_wf true_wf reg-seq-mul-comm iff_weakening_equal bdd-diff_functionality rmul-bdd-diff-reg-seq-mul bdd-diff_weakening reg-seq-mul_functionality_wrt_bdd-diff reg-seq-list-add-as-l_sum map_cons_lemma map_nil_lemma l_sum_cons_lemma l_sum_nil_lemma bdd-diff-add cbv_list_accum_wf int-value-type false_wf le_wf mul_cancel_in_le absval_wf subtract_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf absval_nat_plus equal-wf-T-base absval_mul nat_wf all_wf nat_properties equal-wf-base nequal_wf rem_bounds_absval set_wf equal_wf left_mul_subtract_distrib left_mul_add_distrib add_functionality_wrt_eq div_rem_sum2 mul-distributes-right add-associates minus-add minus-minus mul-associates minus-one-mul mul-commutes zero-mul add-zero zero-add add-swap add-mul-special add-commutes le_functionality le_transitivity int-triangle-inequality add_functionality_wrt_le le_weakening absval_sym sq_stable__le sq_stable__less_than decidable__le intformnot_wf intformle_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache applyEquality lambdaEquality setElimination rename dependent_functionElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed voidElimination voidEquality setEquality functionEquality intEquality functionExtensionality imageElimination equalityTransitivity equalitySymmetry universeEquality addEquality hyp_replacement dependent_pairFormation lambdaFormation divideEquality int_eqEquality computeAll multiplyEquality baseApply closedConclusion remainderEquality equalityUniverse levelHypothesis minusEquality unionElimination

Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  *  (y  +  z))  =  ((x  *  y)  +  (x  *  z)))



Date html generated: 2016_10_26-AM-09_03_57
Last ObjectModification: 2016_07_12-AM-08_14_35

Theory : reals


Home Index