Nuprl Lemma : rmul-distrib1
∀[x,y,z:ℝ].  ((x * (y + z)) = ((x * y) + (x * z)))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
radd: a + b
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
top: Top
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rmul: a * b
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
reg-seq-list-add: reg-seq-list-add(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
int_nzero: ℤ-o
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
req-iff-bdd-diff, 
rmul_wf, 
radd_wf, 
req_witness, 
real_wf, 
reg-seq-mul_wf, 
accelerate-bdd-diff, 
less_than_wf, 
reg-seq-list-add_wf, 
cons_wf, 
nil_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
nat_plus_wf, 
regular-int-seq_wf, 
length_wf, 
accelerate_wf, 
bdd-diff_wf, 
squash_wf, 
true_wf, 
reg-seq-mul-comm, 
iff_weakening_equal, 
bdd-diff_functionality, 
rmul-bdd-diff-reg-seq-mul, 
bdd-diff_weakening, 
reg-seq-mul_functionality_wrt_bdd-diff, 
reg-seq-list-add-as-l_sum, 
map_cons_lemma, 
map_nil_lemma, 
l_sum_cons_lemma, 
l_sum_nil_lemma, 
bdd-diff-add, 
cbv_list_accum_wf, 
int-value-type, 
false_wf, 
le_wf, 
mul_cancel_in_le, 
absval_wf, 
subtract_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
absval_nat_plus, 
equal-wf-T-base, 
absval_mul, 
nat_wf, 
all_wf, 
nat_properties, 
equal-wf-base, 
nequal_wf, 
rem_bounds_absval, 
set_wf, 
equal_wf, 
left_mul_subtract_distrib, 
left_mul_add_distrib, 
add_functionality_wrt_eq, 
div_rem_sum2, 
mul-distributes-right, 
add-associates, 
minus-add, 
minus-minus, 
mul-associates, 
minus-one-mul, 
mul-commutes, 
zero-mul, 
add-zero, 
zero-add, 
add-swap, 
add-mul-special, 
add-commutes, 
le_functionality, 
le_transitivity, 
int-triangle-inequality, 
add_functionality_wrt_le, 
le_weakening, 
absval_sym, 
sq_stable__le, 
sq_stable__less_than, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
voidEquality, 
setEquality, 
functionEquality, 
intEquality, 
functionExtensionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
addEquality, 
hyp_replacement, 
dependent_pairFormation, 
lambdaFormation, 
divideEquality, 
int_eqEquality, 
computeAll, 
multiplyEquality, 
baseApply, 
closedConclusion, 
remainderEquality, 
equalityUniverse, 
levelHypothesis, 
minusEquality, 
unionElimination
Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  *  (y  +  z))  =  ((x  *  y)  +  (x  *  z)))
Date html generated:
2016_10_26-AM-09_03_57
Last ObjectModification:
2016_07_12-AM-08_14_35
Theory : reals
Home
Index