Nuprl Lemma : bdd-diff-add
∀[f1,f2,g1,g2:ℕ+ ⟶ ℤ].  (bdd-diff(f1;f2) 
⇒ bdd-diff(g1;g2) 
⇒ bdd-diff(λn.(f1[n] + g1[n]);λn.(f2[n] + g2[n])))
Proof
Definitions occuring in Statement : 
bdd-diff: bdd-diff(f;g)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
Lemmas referenced : 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than'_wf, 
nat_plus_wf, 
all_wf, 
absval_wf, 
subtract_wf, 
bdd-diff_wf, 
nat_wf, 
nat_plus_properties, 
less_than_wf, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
itermMinus_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_minus_lemma, 
add-is-int-iff, 
subtract-is-int-iff, 
false_wf, 
and_wf, 
equal_wf, 
le_functionality, 
le_weakening, 
int-triangle-inequality, 
add_functionality_wrt_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
cut, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
functionExtensionality, 
functionEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[f1,f2,g1,g2:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    (bdd-diff(f1;f2)  {}\mRightarrow{}  bdd-diff(g1;g2)  {}\mRightarrow{}  bdd-diff(\mlambda{}n.(f1[n]  +  g1[n]);\mlambda{}n.(f2[n]  +  g2[n])))
Date html generated:
2016_10_26-AM-09_02_44
Last ObjectModification:
2016_07_12-AM-08_13_01
Theory : reals
Home
Index