Nuprl Lemma : bdd-diff-add

[f1,f2,g1,g2:ℕ+ ⟶ ℤ].  (bdd-diff(f1;f2)  bdd-diff(g1;g2)  bdd-diff(λn.(f1[n] g1[n]);λn.(f2[n] g2[n])))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) nat_plus: + uall: [x:A]. B[x] so_apply: x[s] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] add: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q bdd-diff: bdd-diff(f;g) exists: x:A. B[x] member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) guard: {T}
Lemmas referenced :  nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf less_than'_wf nat_plus_wf all_wf absval_wf subtract_wf bdd-diff_wf nat_wf nat_plus_properties less_than_wf decidable__equal_int intformeq_wf itermSubtract_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_minus_lemma add-is-int-iff subtract-is-int-iff false_wf and_wf equal_wf le_functionality le_weakening int-triangle-inequality add_functionality_wrt_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation dependent_set_memberEquality addEquality setElimination rename cut hypothesisEquality hypothesis introduction extract_by_obid isectElimination dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry applyEquality functionExtensionality functionEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed setEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[f1,f2,g1,g2:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    (bdd-diff(f1;f2)  {}\mRightarrow{}  bdd-diff(g1;g2)  {}\mRightarrow{}  bdd-diff(\mlambda{}n.(f1[n]  +  g1[n]);\mlambda{}n.(f2[n]  +  g2[n])))



Date html generated: 2016_10_26-AM-09_02_44
Last ObjectModification: 2016_07_12-AM-08_13_01

Theory : reals


Home Index