Nuprl Lemma : ss-ap_functionality
∀[X,Y:SeparationSpace]. ∀[f,g:Point(X ⟶ Y)]. ∀[x,x':Point(X)].  (f(x) ≡ g(x')) supposing (x ≡ x' and f ≡ g)
Proof
Definitions occuring in Statement : 
ss-ap: f(x)
, 
ss-fun: X ⟶ Y
, 
ss-eq: x ≡ y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
ss-function: ss-function(X;Y;f)
, 
guard: {T}
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
top: Top
, 
ss-ap: f(x)
, 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
ss-eq_transitivity, 
sq_stable__ss-eq, 
ss-fun-point, 
separation-space_wf, 
ss-point_wf, 
ss-fun_wf, 
ss-eq_wf, 
ss-ap_wf, 
ss-sep_wf, 
ss-fun-eq
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
applyEquality, 
rename, 
setElimination, 
voidEquality, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f,g:Point(X  {}\mrightarrow{}  Y)].  \mforall{}[x,x':Point(X)].
    (f(x)  \mequiv{}  g(x'))  supposing  (x  \mequiv{}  x'  and  f  \mequiv{}  g)
Date html generated:
2018_07_29-AM-10_11_52
Last ObjectModification:
2018_07_04-PM-00_10_57
Theory : constructive!algebra
Home
Index