Nuprl Lemma : ss-ap_functionality

[X,Y:SeparationSpace]. ∀[f,g:Point(X ⟶ Y)]. ∀[x,x':Point(X)].  (f(x) ≡ g(x')) supposing (x ≡ x' and f ≡ g)


Proof




Definitions occuring in Statement :  ss-ap: f(x) ss-fun: X ⟶ Y ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  ss-function: ss-function(X;Y;f) guard: {T} squash: T sq_stable: SqStable(P) top: Top ss-ap: f(x) prop: false: False implies:  Q not: ¬A ss-eq: x ≡ y all: x:A. B[x] and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ss-eq_transitivity sq_stable__ss-eq ss-fun-point separation-space_wf ss-point_wf ss-fun_wf ss-eq_wf ss-ap_wf ss-sep_wf ss-fun-eq
Rules used in proof :  imageElimination baseClosed imageMemberEquality independent_functionElimination applyEquality rename setElimination voidEquality voidElimination equalitySymmetry equalityTransitivity isect_memberEquality because_Cache lambdaEquality sqequalRule dependent_functionElimination independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f,g:Point(X  {}\mrightarrow{}  Y)].  \mforall{}[x,x':Point(X)].
    (f(x)  \mequiv{}  g(x'))  supposing  (x  \mequiv{}  x'  and  f  \mequiv{}  g)



Date html generated: 2018_07_29-AM-10_11_52
Last ObjectModification: 2018_07_04-PM-00_10_57

Theory : constructive!algebra


Home Index