Nuprl Lemma : ss-fun-eq

[X,Y:SeparationSpace]. ∀[f,g:Point(X ⟶ Y)].  uiff(f ≡ g;∀a:Point(X). f(a) ≡ g(a))


Proof




Definitions occuring in Statement :  ss-ap: f(x) ss-fun: X ⟶ Y ss-eq: x ≡ y ss-point: Point(ss) separation-space: SeparationSpace uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: exists: x:A. B[x] false: False implies:  Q not: ¬A all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ss-ap: f(x) top: Top member: t ∈ T ss-eq: x ≡ y uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-fun_wf all_wf exists_wf not_wf ss-point_wf ss-ap_wf ss-sep_wf ss-fun-sep
Rules used in proof :  productElimination because_Cache dependent_functionElimination lambdaEquality hypothesisEquality dependent_pairFormation independent_functionElimination lambdaFormation independent_pairFormation hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f,g:Point(X  {}\mrightarrow{}  Y)].    uiff(f  \mequiv{}  g;\mforall{}a:Point(X).  f(a)  \mequiv{}  g(a))



Date html generated: 2018_07_29-AM-10_11_49
Last ObjectModification: 2018_07_04-PM-00_06_56

Theory : constructive!algebra


Home Index