Nuprl Lemma : ss-fun-eq
∀[X,Y:SeparationSpace]. ∀[f,g:Point(X ⟶ Y)].  uiff(f ≡ g;∀a:Point(X). f(a) ≡ g(a))
Proof
Definitions occuring in Statement : 
ss-ap: f(x), 
ss-fun: X ⟶ Y, 
ss-eq: x ≡ y, 
ss-point: Point(ss), 
separation-space: SeparationSpace, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
ss-ap: f(x), 
top: Top, 
member: t ∈ T, 
ss-eq: x ≡ y, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-fun_wf, 
all_wf, 
exists_wf, 
not_wf, 
ss-point_wf, 
ss-ap_wf, 
ss-sep_wf, 
ss-fun-sep
Rules used in proof : 
productElimination, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
hypothesisEquality, 
dependent_pairFormation, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:SeparationSpace].  \mforall{}[f,g:Point(X  {}\mrightarrow{}  Y)].    uiff(f  \mequiv{}  g;\mforall{}a:Point(X).  f(a)  \mequiv{}  g(a))
Date html generated:
2018_07_29-AM-10_11_49
Last ObjectModification:
2018_07_04-PM-00_06_56
Theory : constructive!algebra
Home
Index