Nuprl Lemma : ss-mem-basic_wf

[X:SeparationSpace]. ∀[B:ss-basic(X)]. ∀[x:Point(X)].  (x ∈ B ∈ ℙ)


Proof




Definitions occuring in Statement :  ss-mem-basic: x ∈ B ss-basic: ss-basic(X) ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-mem-basic: x ∈ B ss-basic: ss-basic(X) so_lambda: λ2x.t[x] subtype_rel: A ⊆B ss-point: Point(ss) record-select: r.x real-ss: mk-ss: Point=P #=Sep cotrans=C record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt real: prop: so_apply: x[s]
Lemmas referenced :  l_all_wf2 ss-point_wf ss-fun_wf real-ss_wf real_wf rless_wf ss-ap_wf subtype_rel_self l_member_wf ss-basic_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis lambdaEquality_alt spreadEquality setElimination rename applyEquality setIsType productIsType universeIsType axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[B:ss-basic(X)].  \mforall{}[x:Point(X)].    (x  \mmember{}  B  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-PM-01_21_51
Last ObjectModification: 2020_02_08-AM-11_39_00

Theory : intuitionistic!topology


Home Index