Nuprl Lemma : ss-mem-basic_wf
∀[X:SeparationSpace]. ∀[B:ss-basic(X)]. ∀[x:Point(X)].  (x ∈ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
ss-mem-basic: x ∈ B
, 
ss-basic: ss-basic(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ss-mem-basic: x ∈ B
, 
ss-basic: ss-basic(X)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
ss-point: Point(ss)
, 
record-select: r.x
, 
real-ss: ℝ
, 
mk-ss: Point=P #=Sep cotrans=C
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
real: ℝ
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf2, 
ss-point_wf, 
ss-fun_wf, 
real-ss_wf, 
real_wf, 
rless_wf, 
ss-ap_wf, 
subtype_rel_self, 
l_member_wf, 
ss-basic_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
spreadEquality, 
setElimination, 
rename, 
applyEquality, 
setIsType, 
productIsType, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[B:ss-basic(X)].  \mforall{}[x:Point(X)].    (x  \mmember{}  B  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-PM-01_21_51
Last ObjectModification:
2020_02_08-AM-11_39_00
Theory : intuitionistic!topology
Home
Index