Nuprl Lemma : real-ss_wf

ℝ ∈ SeparationSpace


Proof




Definitions occuring in Statement :  real-ss: separation-space: SeparationSpace member: t ∈ T
Definitions unfolded in proof :  real-ss: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B rneq: x ≠ y or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mk-ss_wf real_wf rneq_wf rneq_irrefl istype-void rneq-cotrans subtype_rel_self all_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_set_memberEquality_alt lambdaEquality_alt hypothesisEquality inhabitedIsType universeIsType lambdaFormation_alt independent_functionElimination voidElimination functionIsType applyEquality because_Cache instantiate functionEquality

Latex:
\mBbbR{}  \mmember{}  SeparationSpace



Date html generated: 2019_10_31-AM-07_27_15
Last ObjectModification: 2019_09_19-PM-04_13_25

Theory : constructive!algebra


Home Index