Nuprl Lemma : real-ss_wf
ℝ ∈ SeparationSpace
Proof
Definitions occuring in Statement : 
real-ss: ℝ
, 
separation-space: SeparationSpace
, 
member: t ∈ T
Definitions unfolded in proof : 
real-ss: ℝ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
mk-ss_wf, 
real_wf, 
rneq_wf, 
rneq_irrefl, 
istype-void, 
rneq-cotrans, 
subtype_rel_self, 
all_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
lambdaFormation_alt, 
independent_functionElimination, 
voidElimination, 
functionIsType, 
applyEquality, 
because_Cache, 
instantiate, 
functionEquality
Latex:
\mBbbR{}  \mmember{}  SeparationSpace
Date html generated:
2019_10_31-AM-07_27_15
Last ObjectModification:
2019_09_19-PM-04_13_25
Theory : constructive!algebra
Home
Index