Nuprl Lemma : rneq-cotrans
∀x,y,z:ℝ.  (x ≠ y 
⇒ (x ≠ z ∨ y ≠ z))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
rneq_wf, 
rneq-cases
Rules used in proof : 
isectElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}x,y,z:\mBbbR{}.    (x  \mneq{}  y  {}\mRightarrow{}  (x  \mneq{}  z  \mvee{}  y  \mneq{}  z))
Date html generated:
2018_07_29-AM-09_39_54
Last ObjectModification:
2018_06_28-PM-05_10_56
Theory : reals
Home
Index