Nuprl Lemma : rneq-cotrans

x,y,z:ℝ.  (x ≠  (x ≠ z ∨ y ≠ z))


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] prop: implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  real_wf rneq_wf rneq-cases
Rules used in proof :  isectElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}x,y,z:\mBbbR{}.    (x  \mneq{}  y  {}\mRightarrow{}  (x  \mneq{}  z  \mvee{}  y  \mneq{}  z))



Date html generated: 2018_07_29-AM-09_39_54
Last ObjectModification: 2018_06_28-PM-05_10_56

Theory : reals


Home Index