Nuprl Lemma : mk-ss_wf
∀[P:Type]. ∀[Sep:{s:P ⟶ P ⟶ ℙ| ∀x:P. (¬(s x x))} ]. ∀[C:∀x,y,z:P.  ((Sep x y) ⇒ ((Sep x z) ∨ (Sep y z)))].
  (Point=P #=Sep cotrans=C ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
mk-ss: Point=P #=Sep cotrans=C, 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mk-ss: Point=P #=Sep cotrans=C, 
separation-space: SeparationSpace, 
record+: record+, 
record-update: r[x := v], 
record: record(x.T[x]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
guard: {T}, 
record-select: r.x, 
top: Top, 
eq_atom: x =a y, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
prop: ℙ, 
or: P ∨ Q
Lemmas referenced : 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
atom_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
istype-void, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-assert, 
istype-atom, 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependentIntersection_memberEquality, 
because_Cache, 
functionExtensionality_alt, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
atomEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIstype, 
sqequalBase, 
functionIsType, 
functionExtensionality, 
axiomEquality, 
universeIsType, 
setElimination, 
rename, 
universeEquality, 
unionIsType, 
isectIsTypeImplies, 
setIsType
Latex:
\mforall{}[P:Type].  \mforall{}[Sep:\{s:P  {}\mrightarrow{}  P  {}\mrightarrow{}  \mBbbP{}|  \mforall{}x:P.  (\mneg{}(s  x  x))\}  ].  \mforall{}[C:\mforall{}x,y,z:P.
                                                                                                                      ((Sep  x  y)  {}\mRightarrow{}  ((Sep  x  z)  \mvee{}  (Sep  y  z)))].
    (Point=P  \#=Sep  cotrans=C  \mmember{}  SeparationSpace)
Date html generated:
2019_10_31-AM-07_26_25
Last ObjectModification:
2019_09_19-PM-04_07_38
Theory : constructive!algebra
Home
Index