Nuprl Lemma : mk-ss_wf

[P:Type]. ∀[Sep:{s:P ⟶ P ⟶ ℙ| ∀x:P. (s x))} ]. ∀[C:∀x,y,z:P.  ((Sep y)  ((Sep z) ∨ (Sep z)))].
  (Point=P #=Sep cotrans=C ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  mk-ss: Point=P #=Sep cotrans=C separation-space: SeparationSpace uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-ss: Point=P #=Sep cotrans=C separation-space: SeparationSpace record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop: or: P ∨ Q
Lemmas referenced :  eq_atom_wf uiff_transitivity equal-wf-base bool_wf atom_subtype_base assert_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma istype-void iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert istype-atom subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependentIntersection_memberEquality because_Cache functionExtensionality_alt thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality tokenEquality hypothesis inhabitedIsType lambdaFormation_alt unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality atomEquality independent_functionElimination productElimination independent_isectElimination instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype sqequalBase functionIsType functionExtensionality axiomEquality universeIsType setElimination rename universeEquality unionIsType isectIsTypeImplies setIsType

Latex:
\mforall{}[P:Type].  \mforall{}[Sep:\{s:P  {}\mrightarrow{}  P  {}\mrightarrow{}  \mBbbP{}|  \mforall{}x:P.  (\mneg{}(s  x  x))\}  ].  \mforall{}[C:\mforall{}x,y,z:P.
                                                                                                                      ((Sep  x  y)  {}\mRightarrow{}  ((Sep  x  z)  \mvee{}  (Sep  y  z)))].
    (Point=P  \#=Sep  cotrans=C  \mmember{}  SeparationSpace)



Date html generated: 2019_10_31-AM-07_26_25
Last ObjectModification: 2019_09_19-PM-04_07_38

Theory : constructive!algebra


Home Index