Nuprl Lemma : rabs-difference-bound-rleq

x,y,z:ℝ.  (|x y| ≤ ⇐⇒ ((y z) ≤ x) ∧ (x ≤ (y z)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rsub: y radd: b real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uiff: uiff(P;Q) uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A prop: rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) cand: c∧ B
Lemmas referenced :  rabs-as-rmax rmax_lb rsub_wf rminus_wf rleq-implies-rleq real_term_polynomial itermSubtract_wf itermVar_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 radd_wf itermAdd_wf real_term_value_add_lemma rleq_wf rmax_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation independent_pairFormation hypothesisEquality productElimination independent_isectElimination dependent_functionElimination natural_numberEquality computeAll lambdaEquality int_eqEquality intEquality because_Cache productEquality

Latex:
\mforall{}x,y,z:\mBbbR{}.    (|x  -  y|  \mleq{}  z  \mLeftarrow{}{}\mRightarrow{}  ((y  -  z)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  (y  +  z)))



Date html generated: 2017_10_03-AM-08_39_24
Last ObjectModification: 2017_07_28-AM-07_30_47

Theory : reals


Home Index