Nuprl Lemma : rabs-difference-bound-rleq
∀x,y,z:ℝ.  (|x - y| ≤ z ⇐⇒ ((y - z) ≤ x) ∧ (x ≤ (y + z)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
radd: a + b, 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B
Lemmas referenced : 
rabs-as-rmax, 
rmax_lb, 
rsub_wf, 
rminus_wf, 
rleq-implies-rleq, 
real_term_polynomial, 
itermSubtract_wf, 
itermVar_wf, 
itermMinus_wf, 
int-to-real_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
radd_wf, 
itermAdd_wf, 
real_term_value_add_lemma, 
rleq_wf, 
rmax_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
because_Cache, 
productEquality
Latex:
\mforall{}x,y,z:\mBbbR{}.    (|x  -  y|  \mleq{}  z  \mLeftarrow{}{}\mRightarrow{}  ((y  -  z)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  (y  +  z)))
Date html generated:
2017_10_03-AM-08_39_24
Last ObjectModification:
2017_07_28-AM-07_30_47
Theory : reals
Home
Index