Nuprl Lemma : rmax_lb
∀[x,y,z:ℝ].  uiff((x ≤ z) ∧ (y ≤ z);rmax(x;y) ≤ z)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmax: rmax(x;y)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
guard: {T}
, 
rsub: x - y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rmax_wf, 
real_wf, 
nat_plus_wf, 
and_wf, 
rleq_wf, 
rleq-rmax, 
rleq_transitivity, 
rminus_wf, 
rmin_wf, 
req_weakening, 
req_functionality, 
req_transitivity, 
rmin-req-rminus-rmax, 
rminus_functionality, 
rmax_functionality, 
rminus-rminus, 
radd_wf, 
rnonneg_functionality, 
radd_functionality, 
radd-rmin, 
rmin-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
independent_pairEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality, 
independent_functionElimination
Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff((x  \mleq{}  z)  \mwedge{}  (y  \mleq{}  z);rmax(x;y)  \mleq{}  z)
Date html generated:
2016_05_18-AM-07_16_23
Last ObjectModification:
2015_12_28-AM-00_43_36
Theory : reals
Home
Index