Nuprl Lemma : rmax_lb

[x,y,z:ℝ].  uiff((x ≤ z) ∧ (y ≤ z);rmax(x;y) ≤ z)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) real: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: guard: {T} rsub: y rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  less_than'_wf rsub_wf rmax_wf real_wf nat_plus_wf and_wf rleq_wf rleq-rmax rleq_transitivity rminus_wf rmin_wf req_weakening req_functionality req_transitivity rmin-req-rminus-rmax rminus_functionality rmax_functionality rminus-rminus radd_wf rnonneg_functionality radd_functionality radd-rmin rmin-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule lambdaEquality dependent_functionElimination hypothesisEquality independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination voidElimination isect_memberEquality independent_functionElimination

Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff((x  \mleq{}  z)  \mwedge{}  (y  \mleq{}  z);rmax(x;y)  \mleq{}  z)



Date html generated: 2016_05_18-AM-07_16_23
Last ObjectModification: 2015_12_28-AM-00_43_36

Theory : reals


Home Index