Nuprl Lemma : rminus-rminus

[x:ℝ]. (-(-(x)) x)


Proof




Definitions occuring in Statement :  req: y rminus: -(x) real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a real: rminus: -(x) nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: guard: {T}
Lemmas referenced :  real_wf req_witness req_inversion regular-int-seq_wf nat_plus_wf int_formula_prop_wf int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermMinus_wf itermVar_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties rminus_wf req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination setElimination rename dependent_set_memberEquality functionExtensionality sqequalRule dependent_functionElimination because_Cache unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination

Latex:
\mforall{}[x:\mBbbR{}].  (-(-(x))  =  x)



Date html generated: 2016_05_18-AM-06_51_09
Last ObjectModification: 2016_01_17-AM-01_46_06

Theory : reals


Home Index