Nuprl Lemma : rmin_wf
∀[x,y:ℝ].  (rmin(x;y) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rmin: rmin(x;y)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
Lemmas referenced : 
le_weakening, 
absval-imin-difference, 
le_functionality, 
iff_weakening_equal, 
mul-imin, 
true_wf, 
squash_wf, 
le_wf, 
imax_lb, 
nat_wf, 
imax_wf, 
subtract_wf, 
absval_wf, 
nat_plus_subtype_nat, 
real_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
imin_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
lambdaEquality, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
multiplyEquality, 
addEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
imageElimination, 
intEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    (rmin(x;y)  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-06_59_15
Last ObjectModification:
2016_01_17-AM-01_48_11
Theory : reals
Home
Index