Nuprl Lemma : rmin-req-rminus-rmax
∀[x,y:ℝ].  (rmin(x;y) = -(rmax(-(x);-(y))))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y), 
rmax: rmax(x;y), 
req: x = y, 
rminus: -(x), 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmin_wf, 
rminus_wf, 
rmax_wf, 
real_wf, 
req_weakening, 
req_functionality, 
req_transitivity, 
rminus-rmax, 
rmin_functionality, 
rminus-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    (rmin(x;y)  =  -(rmax(-(x);-(y))))
Date html generated:
2016_05_18-AM-06_59_38
Last ObjectModification:
2015_12_28-AM-00_32_43
Theory : reals
Home
Index