Nuprl Lemma : rmin_functionality
∀[x1,x2,y1,y2:ℝ].  (rmin(x1;y1) = rmin(x2;y2)) supposing ((x1 = x2) and (y1 = y2))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
req-iff-bdd-diff, 
rmin_wf, 
req_witness, 
req_wf, 
real_wf, 
bdd-diff_functionality, 
rmin_functionality_wrt_bdd-diff, 
bdd-diff_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
dependent_functionElimination
Latex:
\mforall{}[x1,x2,y1,y2:\mBbbR{}].    (rmin(x1;y1)  =  rmin(x2;y2))  supposing  ((x1  =  x2)  and  (y1  =  y2))
Date html generated:
2016_05_18-AM-06_59_22
Last ObjectModification:
2015_12_28-AM-00_32_30
Theory : reals
Home
Index