Nuprl Lemma : rleq_transitivity
∀[x,y,z:ℝ].  (x ≤ z) supposing ((y ≤ z) and (x ≤ y))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rleq: x ≤ y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rsub: x - y
Lemmas referenced : 
rnonneg-radd, 
rsub_wf, 
less_than'_wf, 
real_wf, 
nat_plus_wf, 
rnonneg_wf, 
radd_wf, 
rminus_wf, 
rnonneg_functionality, 
radd_comm, 
req_inversion, 
radd-assoc, 
req_transitivity, 
radd-ac, 
radd_functionality, 
req_weakening, 
radd-rminus-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
addLevel, 
independent_isectElimination, 
promote_hyp
Latex:
\mforall{}[x,y,z:\mBbbR{}].    (x  \mleq{}  z)  supposing  ((y  \mleq{}  z)  and  (x  \mleq{}  y))
Date html generated:
2016_05_18-AM-07_05_47
Last ObjectModification:
2015_12_28-AM-00_36_31
Theory : reals
Home
Index