Nuprl Lemma : radd-rminus-assoc

[x,y:ℝ].  (((x -(x) y) y) ∧ ((-(x) y) y))


Proof




Definitions occuring in Statement :  req: y rminus: -(x) radd: b real: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  radd-rminus-both radd_functionality req_weakening radd-assoc req_functionality and_wf uall_wf radd-zero-both int-to-real_wf req_witness iff_weakening_equal rminus_wf radd_comm_eq radd_wf real_wf true_wf squash_wf req_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination independent_pairEquality isect_memberEquality addLevel uallFunctionality

Latex:
\mforall{}[x,y:\mBbbR{}].    (((x  +  -(x)  +  y)  =  y)  \mwedge{}  ((-(x)  +  x  +  y)  =  y))



Date html generated: 2016_05_18-AM-06_51_51
Last ObjectModification: 2016_01_17-AM-01_46_32

Theory : reals


Home Index