Nuprl Lemma : radd-rminus-assoc
∀[x,y:ℝ].  (((x + -(x) + y) = y) ∧ ((-(x) + x + y) = y))
Proof
Definitions occuring in Statement : 
req: x = y
, 
rminus: -(x)
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
radd-rminus-both, 
radd_functionality, 
req_weakening, 
radd-assoc, 
req_functionality, 
and_wf, 
uall_wf, 
radd-zero-both, 
int-to-real_wf, 
req_witness, 
iff_weakening_equal, 
rminus_wf, 
radd_comm_eq, 
radd_wf, 
real_wf, 
true_wf, 
squash_wf, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
addLevel, 
uallFunctionality
Latex:
\mforall{}[x,y:\mBbbR{}].    (((x  +  -(x)  +  y)  =  y)  \mwedge{}  ((-(x)  +  x  +  y)  =  y))
Date html generated:
2016_05_18-AM-06_51_51
Last ObjectModification:
2016_01_17-AM-01_46_32
Theory : reals
Home
Index