Nuprl Lemma : rmin-nonneg

[x,y:ℝ].  rnonneg(rmin(x;y)) supposing rnonneg(x) ∧ rnonneg(y)


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) rmin: rmin(x;y) real: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q rnonneg: rnonneg(x) all: x:A. B[x] rmin: rmin(x;y) squash: T prop: le: A ≤ B real: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  le_wf squash_wf true_wf imin_unfold iff_weakening_equal le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot nat_plus_wf less_than'_wf rmin_wf real_wf rnonneg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lambdaFormation hypothesis dependent_functionElimination hypothesisEquality sqequalRule applyEquality lambdaEquality imageElimination extract_by_obid isectElimination equalityTransitivity equalitySymmetry intEquality setElimination rename because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity voidElimination independent_pairEquality minusEquality axiomEquality productEquality isect_memberEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    rnonneg(rmin(x;y))  supposing  rnonneg(x)  \mwedge{}  rnonneg(y)



Date html generated: 2017_10_03-AM-08_24_39
Last ObjectModification: 2017_07_28-AM-07_23_26

Theory : reals


Home Index