Nuprl Lemma : rmin-nonneg
∀[x,y:ℝ].  rnonneg(rmin(x;y)) supposing rnonneg(x) ∧ rnonneg(y)
Proof
Definitions occuring in Statement : 
rnonneg: rnonneg(x), 
rmin: rmin(x;y), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
rmin: rmin(x;y), 
squash: ↓T, 
prop: ℙ, 
le: A ≤ B, 
real: ℝ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
le_wf, 
squash_wf, 
true_wf, 
imin_unfold, 
iff_weakening_equal, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
nat_plus_wf, 
less_than'_wf, 
rmin_wf, 
real_wf, 
rnonneg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
productEquality, 
isect_memberEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    rnonneg(rmin(x;y))  supposing  rnonneg(x)  \mwedge{}  rnonneg(y)
Date html generated:
2017_10_03-AM-08_24_39
Last ObjectModification:
2017_07_28-AM-07_23_26
Theory : reals
Home
Index