Nuprl Lemma : imin_unfold

[a,b:ℤ].  (imin(a;b) if a ≤then else fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  imin: imin(a;b) le_int: i ≤j ifthenelse: if then else fi  uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  imin: imin(a;b) uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a
Lemmas referenced :  value-type-has-value int-value-type ifthenelse_wf le_int_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (imin(a;b)  =  if  a  \mleq{}z  b  then  a  else  b  fi  )



Date html generated: 2016_05_14-AM-07_21_26
Last ObjectModification: 2015_12_26-PM-01_31_35

Theory : int_2


Home Index