Nuprl Lemma : imin_unfold
∀[a,b:ℤ].  (imin(a;b) = if a ≤z b then a else b fi  ∈ ℤ)
Proof
Definitions occuring in Statement : 
imin: imin(a;b)
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
imin: imin(a;b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
uimplies: b supposing a
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
ifthenelse_wf, 
le_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    (imin(a;b)  =  if  a  \mleq{}z  b  then  a  else  b  fi  )
Date html generated:
2016_05_14-AM-07_21_26
Last ObjectModification:
2015_12_26-PM-01_31_35
Theory : int_2
Home
Index