Nuprl Lemma : rminus_functionality
∀[x,y:ℝ].  -(x) = -(y) supposing x = y
Proof
Definitions occuring in Statement : 
req: x = y
, 
rminus: -(x)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
req: x = y
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
rminus: -(x)
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
le_wf, 
squash_wf, 
true_wf, 
absval_sym, 
subtract_wf, 
rminus_wf, 
iff_weakening_equal, 
nat_plus_wf, 
req_witness, 
req_wf, 
real_wf, 
absval_wf, 
nat_plus_properties, 
decidable__equal_int, 
less_than_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMinus_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_minus_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
hyp_replacement, 
unionElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[x,y:\mBbbR{}].    -(x)  =  -(y)  supposing  x  =  y
Date html generated:
2016_10_26-AM-09_03_34
Last ObjectModification:
2016_07_12-AM-08_13_37
Theory : reals
Home
Index