Nuprl Lemma : rminus_functionality

[x,y:ℝ].  -(x) -(y) supposing y


Proof




Definitions occuring in Statement :  req: y rminus: -(x) real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req: y all: x:A. B[x] squash: T prop: subtype_rel: A ⊆B real: le: A ≤ B and: P ∧ Q true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q rminus: -(x) nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  le_wf squash_wf true_wf absval_sym subtract_wf rminus_wf iff_weakening_equal nat_plus_wf req_witness req_wf real_wf absval_wf nat_plus_properties decidable__equal_int less_than_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMinus_wf itermSubtract_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_minus_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality applyEquality lambdaEquality imageElimination extract_by_obid isectElimination equalityTransitivity equalitySymmetry intEquality setElimination rename because_Cache sqequalRule productElimination natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination isect_memberEquality hyp_replacement unionElimination dependent_set_memberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[x,y:\mBbbR{}].    -(x)  =  -(y)  supposing  x  =  y



Date html generated: 2016_10_26-AM-09_03_34
Last ObjectModification: 2016_07_12-AM-08_13_37

Theory : reals


Home Index