Nuprl Lemma : rleq-implies-rleq
∀[a,b,c,d:ℝ].  (a ≤ b) supposing ((c ≤ d) and ((d - c) = (b - a)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
rsub: x - y
, 
guard: {T}
Lemmas referenced : 
radd-preserves-rleq, 
rminus_wf, 
radd-rminus-both, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
rleq_wf, 
req_wf, 
radd_wf, 
int-to-real_wf, 
rleq_functionality, 
req_weakening, 
radd_comm, 
req_inversion, 
rleq_transitivity, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    (a  \mleq{}  b)  supposing  ((c  \mleq{}  d)  and  ((d  -  c)  =  (b  -  a)))
Date html generated:
2017_10_03-AM-08_25_39
Last ObjectModification:
2017_04_04-PM-02_19_18
Theory : reals
Home
Index