Nuprl Lemma : rleq_weakening

[x,y:ℝ].  x ≤ supposing y


Proof




Definitions occuring in Statement :  rleq: x ≤ y req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: uiff: uiff(P;Q) less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q rsub: y rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  less_than'_wf rsub_wf real_wf nat_plus_wf req_wf rnonneg-int false_wf rnonneg_functionality radd_wf rminus_wf int-to-real_wf radd-rminus-both rnonneg_wf rleq_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination independent_pairFormation lambdaFormation addLevel independent_functionElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    x  \mleq{}  y  supposing  x  =  y



Date html generated: 2016_05_18-AM-07_05_58
Last ObjectModification: 2015_12_28-AM-00_36_56

Theory : reals


Home Index