Nuprl Lemma : real_term_polynomial

t:int_term(). ipolynomial-term(int_term_to_ipoly(t)) ≡ t


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 int_term_to_ipoly: int_term_to_ipoly(t) ipolynomial-term: ipolynomial-term(p) int_term: int_term() all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T subtype_rel: A ⊆B iPolynomial: iPolynomial() so_apply: x[s] implies:  Q all: x:A. B[x] int_term_to_ipoly: int_term_to_ipoly(t) itermConstant: "const" int_term_ind: int_term_ind itermVar: vvar itermAdd: left (+) right prop: itermSubtract: left (-) right itermMultiply: left (*) right itermMinus: "-"num guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) false: False not: ¬A req_int_terms: t1 ≡ t2 ipolynomial-term: ipolynomial-term(p) top: Top ifthenelse: if then else fi  btrue: tt so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff imonomial-term: imonomial-term(m) real_term_value: real_term_value(f;t) uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) rsub: y
Lemmas referenced :  int_term-induction req_int_terms_wf ipolynomial-term_wf int_term_to_ipoly_wf iPolynomial_wf int_term_wf decidable__equal_int subtype_base_sq int_subtype_base real_wf null_nil_lemma real_term_value_const_lemma req_weakening int-to-real_wf null_cons_lemma spread_cons_lemma list_accum_nil_lemma real_term_value_wf itermConstant_wf list_accum_cons_lemma rmul-identity1 add-ipoly_wf1 itermAdd_wf itermAdd_functionality_wrt_req add_ipoly-sq req_int_terms_functionality add-ipoly-req req_int_terms_weakening add_ipoly_wf minus-poly_wf itermSubtract_wf itermMinus_wf uiff_transitivity req_int_terms_transitivity minus-poly-req itermMinus_functionality_wrt_req radd_wf rminus_wf mul_ipoly_wf itermMultiply_wf mul-ipoly_wf mul_poly-sq mul-ipoly-req itermMultiply_functionality_wrt_req
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality hypothesisEquality hypothesis applyEquality setElimination rename independent_functionElimination lambdaFormation intEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination instantiate cumulativity independent_isectElimination int_eqReduceFalseSq functionEquality isect_memberEquality voidElimination voidEquality functionExtensionality productElimination

Latex:
\mforall{}t:int\_term().  ipolynomial-term(int\_term\_to\_ipoly(t))  \mequiv{}  t



Date html generated: 2017_10_02-PM-07_20_30
Last ObjectModification: 2017_07_28-AM-07_21_36

Theory : reals


Home Index