Nuprl Lemma : real_term_polynomial
∀t:int_term(). ipolynomial-term(int_term_to_ipoly(t)) ≡ t
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2, 
int_term_to_ipoly: int_term_to_ipoly(t), 
ipolynomial-term: ipolynomial-term(p), 
int_term: int_term(), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
iPolynomial: iPolynomial(), 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermConstant: "const", 
int_term_ind: int_term_ind, 
itermVar: vvar, 
itermAdd: left (+) right, 
prop: ℙ, 
itermSubtract: left (-) right, 
itermMultiply: left (*) right, 
itermMinus: "-"num, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
false: False, 
not: ¬A, 
req_int_terms: t1 ≡ t2, 
ipolynomial-term: ipolynomial-term(p), 
top: Top, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bfalse: ff, 
imonomial-term: imonomial-term(m), 
real_term_value: real_term_value(f;t), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
rsub: x - y
Lemmas referenced : 
int_term-induction, 
req_int_terms_wf, 
ipolynomial-term_wf, 
int_term_to_ipoly_wf, 
iPolynomial_wf, 
int_term_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
real_wf, 
null_nil_lemma, 
real_term_value_const_lemma, 
req_weakening, 
int-to-real_wf, 
null_cons_lemma, 
spread_cons_lemma, 
list_accum_nil_lemma, 
real_term_value_wf, 
itermConstant_wf, 
list_accum_cons_lemma, 
rmul-identity1, 
add-ipoly_wf1, 
itermAdd_wf, 
itermAdd_functionality_wrt_req, 
add_ipoly-sq, 
req_int_terms_functionality, 
add-ipoly-req, 
req_int_terms_weakening, 
add_ipoly_wf, 
minus-poly_wf, 
itermSubtract_wf, 
itermMinus_wf, 
uiff_transitivity, 
req_int_terms_transitivity, 
minus-poly-req, 
itermMinus_functionality_wrt_req, 
radd_wf, 
rminus_wf, 
mul_ipoly_wf, 
itermMultiply_wf, 
mul-ipoly_wf, 
mul_poly-sq, 
mul-ipoly-req, 
itermMultiply_functionality_wrt_req
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
independent_functionElimination, 
lambdaFormation, 
intEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
int_eqReduceFalseSq, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionExtensionality, 
productElimination
Latex:
\mforall{}t:int\_term().  ipolynomial-term(int\_term\_to\_ipoly(t))  \mequiv{}  t
 Date html generated: 
2017_10_02-PM-07_20_30
 Last ObjectModification: 
2017_07_28-AM-07_21_36
Theory : reals
Home
Index