Nuprl Lemma : req_int_terms_transitivity

[t1,t2,t3:int_term()].  (t1 ≡ t3) supposing (t2 ≡ t3 and t1 ≡ t2)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 int_term: int_term() uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req_int_terms: t1 ≡ t2 all: x:A. B[x] implies:  Q prop: guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf req_witness real_term_value_wf req_int_terms_wf int_term_wf req_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation functionEquality intEquality extract_by_obid hypothesis sqequalRule lambdaEquality dependent_functionElimination thin hypothesisEquality isectElimination functionExtensionality applyEquality independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination productElimination

Latex:
\mforall{}[t1,t2,t3:int\_term()].    (t1  \mequiv{}  t3)  supposing  (t2  \mequiv{}  t3  and  t1  \mequiv{}  t2)



Date html generated: 2017_10_02-PM-07_18_34
Last ObjectModification: 2017_04_02-PM-11_44_48

Theory : reals


Home Index