Nuprl Lemma : req_int_terms_transitivity
∀[t1,t2,t3:int_term()].  (t1 ≡ t3) supposing (t2 ≡ t3 and t1 ≡ t2)
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2
, 
int_term: int_term()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
req_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
req_witness, 
real_term_value_wf, 
req_int_terms_wf, 
int_term_wf, 
req_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
functionEquality, 
intEquality, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[t1,t2,t3:int\_term()].    (t1  \mequiv{}  t3)  supposing  (t2  \mequiv{}  t3  and  t1  \mequiv{}  t2)
Date html generated:
2017_10_02-PM-07_18_34
Last ObjectModification:
2017_04_02-PM-11_44_48
Theory : reals
Home
Index