Nuprl Lemma : req_int_terms_wf
∀[t1,t2:int_term()].  (t1 ≡ t2 ∈ ℙ)
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
req_int_terms: t1 ≡ t2
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
real_wf, 
req_wf, 
real_term_value_wf, 
int_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
intEquality, 
hypothesis, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[t1,t2:int\_term()].    (t1  \mequiv{}  t2  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-07_18_20
Last ObjectModification:
2017_04_02-PM-00_39_39
Theory : reals
Home
Index