Nuprl Lemma : real_term_value_wf
∀[f:ℤ ⟶ ℝ]. ∀[t:int_term()].  (real_term_value(f;t) ∈ ℝ)
Proof
Definitions occuring in Statement : 
real_term_value: real_term_value(f;t)
, 
real: ℝ
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real_term_value: real_term_value(f;t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
int_term_ind_wf_simple, 
real_wf, 
int-to-real_wf, 
radd_wf, 
int_term_wf, 
rsub_wf, 
rmul_wf, 
rminus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[t:int\_term()].    (real\_term\_value(f;t)  \mmember{}  \mBbbR{})
Date html generated:
2017_10_02-PM-07_17_48
Last ObjectModification:
2017_04_02-PM-00_35_46
Theory : reals
Home
Index