Nuprl Lemma : real_term_value_wf

[f:ℤ ⟶ ℝ]. ∀[t:int_term()].  (real_term_value(f;t) ∈ ℝ)


Proof




Definitions occuring in Statement :  real_term_value: real_term_value(f;t) real: int_term: int_term() uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real_term_value: real_term_value(f;t) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  int_term_ind_wf_simple real_wf int-to-real_wf radd_wf int_term_wf rsub_wf rmul_wf rminus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality intEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality

Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[t:int\_term()].    (real\_term\_value(f;t)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_02-PM-07_17_48
Last ObjectModification: 2017_04_02-PM-00_35_46

Theory : reals


Home Index