Nuprl Lemma : itermMinus_functionality_wrt_req
∀[a,b:int_term()].  "-"a ≡ "-"b supposing a ≡ b
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2, 
itermMinus: "-"num, 
int_term: int_term(), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
req_int_terms: t1 ≡ t2, 
all: ∀x:A. B[x], 
real_term_value: real_term_value(f;t), 
itermMinus: "-"num, 
int_term_ind: int_term_ind, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
req_witness, 
real_term_value_wf, 
itermMinus_wf, 
req_int_terms_wf, 
int_term_wf, 
rminus_wf, 
req_weakening, 
req_functionality, 
rminus_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
functionEquality, 
intEquality, 
extract_by_obid, 
lambdaEquality, 
isectElimination, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[a,b:int\_term()].    "-"a  \mequiv{}  "-"b  supposing  a  \mequiv{}  b
 Date html generated: 
2017_10_02-PM-07_18_55
 Last ObjectModification: 
2017_04_02-PM-11_39_23
Theory : reals
Home
Index