Nuprl Lemma : req_int_terms_weakening
∀[t1,t2:int_term()].  t1 ≡ t2 supposing t1 = t2 ∈ int_term()
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2, 
int_term: int_term(), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
req_int_terms: t1 ≡ t2, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
real_wf, 
req_witness, 
real_term_value_wf, 
equal_wf, 
int_term_wf, 
req_weakening, 
req_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
functionEquality, 
intEquality, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_isectElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination
Latex:
\mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t1  =  t2
 Date html generated: 
2017_10_02-PM-07_18_30
 Last ObjectModification: 
2017_04_02-PM-11_43_57
Theory : reals
Home
Index