Nuprl Lemma : req_int_terms_weakening

[t1,t2:int_term()].  t1 ≡ t2 supposing t1 t2 ∈ int_term()


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 int_term: int_term() uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req_int_terms: t1 ≡ t2 all: x:A. B[x] implies:  Q prop: true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  real_wf req_witness real_term_value_wf equal_wf int_term_wf req_weakening req_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation functionEquality intEquality extract_by_obid hypothesis sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality isectElimination functionExtensionality applyEquality independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination imageElimination imageMemberEquality baseClosed universeEquality productElimination

Latex:
\mforall{}[t1,t2:int\_term()].    t1  \mequiv{}  t2  supposing  t1  =  t2



Date html generated: 2017_10_02-PM-07_18_30
Last ObjectModification: 2017_04_02-PM-11_43_57

Theory : reals


Home Index