Nuprl Lemma : itermAdd_functionality_wrt_req
∀[a,b,c,d:int_term()].  (a (+) c ≡ b (+) d) supposing (a ≡ b and c ≡ d)
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2
, 
itermAdd: left (+) right
, 
int_term: int_term()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
req_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
real_term_value: real_term_value(f;t)
, 
itermAdd: left (+) right
, 
int_term_ind: int_term_ind, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
req_witness, 
real_term_value_wf, 
itermAdd_wf, 
req_int_terms_wf, 
int_term_wf, 
radd_wf, 
req_weakening, 
req_functionality, 
radd_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
functionEquality, 
intEquality, 
extract_by_obid, 
lambdaEquality, 
isectElimination, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[a,b,c,d:int\_term()].    (a  (+)  c  \mequiv{}  b  (+)  d)  supposing  (a  \mequiv{}  b  and  c  \mequiv{}  d)
Date html generated:
2017_10_02-PM-07_18_41
Last ObjectModification:
2017_04_02-PM-11_37_19
Theory : reals
Home
Index